- (-)-(R)-[7.7]-Vespiren (14): 324T(-167), 317G(+118), 309sh(+53), 298T(0), 282G(+235), 257T(-53), 249G(-24), 241T(-170), 220G(+588).
- (-)-(R)-[8.8]-Vespiren (15): 323 T(-116), 316(+68), 297 T(+24), 283(+102), 266 T(0), 255 G(+36), 237 T(-153), 219 G(365).

LITERATURVERZEICHNIS

- [1] 42. Mitt.: G. Snatzke, J. Hrbek, jr., L. Hruban, A. Horeau & F. Šantavý, Tetrahedron 26, 5013 (1970).
- [2] 72. Mitt.: P. M. Scopes, R. N. Thomas & M. B. Rahman, J. chem. Soc. (in Vorbereitung).
- [3] R. S. Cahn, Sir Christopher Ingold & V. Prelog, Angew. Chem. 78, 413 (1966); Intern. Ed. 5, 385 (1966).
- [4] G. Haas & V. Prelog, Helv. 52, 1202 (1969).
- [5] H. Suzuki, "Electronic Absorption Spectra and Geometry of Organic Molecules", S. 261ff., Academic Press, New York 1967; Y. Gondo, J. chem. Physics 41, 3928 (1964); R. Grinter, Mol. Physics 11, 7 (1966).
- [6] H. E. Simmons & T. Fukunaga, J. Amer. chem. Soc. 89, 5208 (1967); R. Hoffmann, A. Imamura & G. F. Zeiss, ibid. 89, 5215 (1967); R. Boschi, A. S. Dreiding & E. Heilbronner, ibid. 92, 123 (1970).
- [7] S. F. Mason, a. Quart. Rev. 17, 20 (1963) b. "Optical Rotatory Dispersion and Circular Dichroism" S.71 ff., Herausgeber G. Snatzke, Heyden, London, 1967.
- [8] J. A. Schellman, Acc. Chem. Res. 1, 144 (1968).
- [9] S. F. Mason, in Some Newer Physical Methods in Structural Chemistry, S. 149, Herausgeber R. Bonnett & J. G. Davis, United Trade Press, London 1967.
- [10] G. Snatzke, «Optical Rotatory Dispersion and Circular Dichroism», S. 211 (Herausgeber G. Snatzke), Heyden, London 1967.
- [11] D. M. Burns & J. Iball, Proc. Roy. Soc. A 277, 200 (1955).
- [12] R. Hoffmann, R. W. Alder & C. F. Wilcox, jr., J. Amer. chem. Soc. 92, 4992 (1970).
- [13] K. Mislow, M. A. W. Glass, R. E. O'Brien, P. Rutkin, D. H. Steinberg, J. Weiss & C. Djerassi, J. Amer. chem. Soc. 84, 1455 (1962); E. Bunnenberg, C. Djerassi, K. Mislow & A. Moscowitz, ibid. 84, 2823 (1962); K. Mislow, E. Bunnenberg, R. Records, K. Wellman & C. Djerassi, ibid. 85, 1342 (1963); J. C. Craig & S. K. Roy, Tetrahedron 21, 395 (1965).
- [14] M. S. Newman, R. S. Darlak & L. Tsai, J. Amer. chem. Soc. 89, 6191 (1967).
- [15] M. Saunders, Tetrahedron 23, 2105 (1967).
- [16] G. Snatzke, Tetrahedron 21, 439 (1965).
- [17] J. Tanaka, Bull. chem. Soc. Japan 36, 833 (1963).
- [18] A. Moscowitz, in C. Djerassi, «Optical Rotatory Dispersion», S. 159, McGraw-Hill, New York, Toronto, London 1960.

50. Pyridinderivate als Komplexbildner IX

Die Stabilitätskonstanten von Komplexen mit a) 2-Aminomethylpyridin, b) 6-Methyl-2-aminomethyl-pyridin, c) 2-Pyridylhydrazin, d) 2,2'-Dipyridylamin und e) 1-(α-Pyridylmethylen)-2-(α'-pyridyl)-hydrazin

von G. Anderegg

Laboratorium für Anorganische Chemie, Eidg. Techn. Hochschule Zürich

(13. I. 71)

Summary. The complex formation of the ligands given in the title has been investigated using potentiometric measurements at ionic strength 0,1 and 20°C. The results are discussed in comparison with the known values and with those of similar ligands.

In den letzten Jahren wurden vielfach Komplexbildner mit Pyridinstickstoffdonoren untersucht. Nur in vereinzelten Fällen wurden jedoch die Gleichgewichte in Lösung quantitativ aufgeklärt, da man sich oft auf die Isolierung von Komplexsalzen und die Untersuchung der magnetischen und spektroskopischen Eigenschaften einiger Komplexe beschränkt hat [1].

Von den folgenden Verbindungen:

- a) 2-Aminomethyl-pyridin,
- b) 6-Methyl-2-aminomethyl-pyridin,
- c) 2-Pyridylhydrazin,
- d) 2,2'-Dipyridylamin,
- e) $1-(\alpha-\text{Pyridylmethylen})-2-(\alpha'-\text{pyridyl})-\text{hydrazin}$

wurden nur für die erste und die letzte die Komplexgleichgewichte quantitativ untersucht [2] [3]. Einige Konstanten mit Verbindung b sind aus Messungen in Wasser-Dioxan-Lösungen ermittelt worden [4]. Nach Emmert [1] bildet 2-Pyridylhydrazin mit Fe^{II} einen luftbeständigen roten Komplex, der leicht zum entsprechenden Komplex des dreiwertigen Eisens oxydiert werden kann. Dieses Verhalten steht im Gegensatz zu den Beobachtungen mit α, α' -Dipyridyl als Ligand, dessen Komplex mit der zweiwertigen Stufe stabiler ist als derjenige mit Fe^{III}. Es wurde deshalb auch diese Verbindung in unsere Untersuchung miteinbezogen, in der Hoffnung, mittels Gleichgewichtsstudien diese Angabe zu überprüfen. Die Verbindung e wurde von Lions et al. synthetisiert und untersucht [1]. Die von Green et al. [3] erhaltenen Stabilitätskonstanten zeigen, dass für die Komplexe mehrerer Metall-Ionen die normale Sequenz der stufenweisen Konstanten $K_1 > K_2$ usw. $(K_n = [ML_n]/([ML_{n-1}][L]))$ nicht gilt. Diese Autoren haben aus Messungen an verdünnten Lösungen von Komplexbildner und Metall, ohne Inertsalzzugabe, durch Anwendung von empirisch berechneten Aktivitätskoeffizienten die sogenannten thermodynamischen Konstanten erhalten. Es lag nahe, diese Gleichgewichtskonstanten bei den gleichen Bedingungen zu bestimmen, die wir für alle anderen analogen Systeme dieser Reihe verwendet haben. Von den fünf Verbindungen sind drei (a, b und d) käuflich und die anderen lassen sich nach bekannten Methoden [1] synthetisieren.

Messmethoden und -resultate. – Zur Bestimmung der Stabilitätskonstanten wurden in den meisten Fällen alkalimetrische Titrationen durchgeführt [5]. Die Titrierlösungen enthielten anfänglich neben den protonierten Liganden verschiedene Mengen des untersuchten Metall-Ions. Es handelte sich hauptsächlich um die Aufnahme sogenannter Äquivalent- und Unterschusskurven, Lösungen mit äquimolaren Totalkonzentrationen von Metall-Ion und Ligand: $[M]_t = [L]_t$ bzw. $[M]_t < [L]_t$ [6]. Die zur Berechnung der Stabilitätskonstanten notwendigen Protonierungskonstanten des Liganden wurden bestimmt. Die verwendete Messkette wurde durch Titration mit Lösungen starker und schwacher Säuren bei der Ionenstärke 0,1 (NaNO3 bzw. KNO3) geeicht. Die experimentellen Resultate (ml Titriermittel und zugehöriger pH-Wert (pH = $-\log[H]$)) lassen sich dann leicht nach Bjerrum für bekannte totale Konzentrationen $[M]_t$ und $[L]_t$ und Protonierungskonstanten des Amins in Wertepaare, Komplexbildungsgrad \overline{n}_i , $-\log L_i$ umformen [7]. Diese Daten wurden für die Berechnung der Konstanten K_n und β_n ($-[ML_n]/([M][L]^n)$) mit der Komplexbildungsfunktion:

$$\sum_{n=0}^{N}{(\overline{n}-n)\beta_{n}[L]^{n}}=\sum_{n=0}^{N}{(\overline{n}-n)\prod_{i=0}^{n}{K_{i}[L]^{n}}}=0$$

 $(\beta_0 = K_0 = 1)$ verwendet [7]. Man führte zu diesem Zweck eine Ausgleichrechnung nach der Methode der kleinsten Quadrate durch [8], wobei für jeden Messpunkt zur Berücksichtigung der

Fehlerquellen ein Gewicht eingesetzt wurde. Die Logarithmen der Konstanten $K_{\rm n}$ sind in der Tabelle zu finden.

Ligand	$\log K_{\rm n}$	Mn^{2+}	Co2+	$\mathrm{Ni^{2+}}$	Cu^{2+}	Zn^{2+}	Hg^{2+}	Cd^{2+}	Ag+
$ \begin{array}{c} $	$\log K_1$	2,66	5,68	7,24	9,40	5,36	$\log eta_2$	4,38	4,11
2-Aminomethyl-pyridin pK von H ₂ L ²⁺ : 2,04; 8,79	\logK_2		4,7 0	6,35	7,80	4,24	=20,08	3,92	
Inertsalz: NaNO ₃	\logK_3		3,60	5,31		2,99		3,03	
CH ₃ —CH ₂ NH ₂ (b)	\logK_1	1,95	3,82	5,15	7,35	~4		4,35	4,4
6-Methyl-2-aminomethylpyridin p K von $\mathrm{H_2L^{2+}}$: 3,08; 8,90 Inertsalz: $\mathrm{NaNO_3}$	$\log K_2 \\ \log K_3$			3,65 2	6,45			3,0	
NHNH ₂ (c)	$\log K_1$	2,64	5,89	7,06		5,40		4,36	
2-Pyridylhydrazin pK von HL+: 7,24	\logK_2		4,97	6,81		4,55		3,82	
Înertsalz: NaNO ₃	$\log K_3$		4,02	5,79		3,35			
\sqrt{N} -NH- \sqrt{N} (d)	$\log K_1$	~2	4,72	6,25	8,05	3,75		~2,6	
2, 2'-Dipyridylamin p K von HL+: 7,14 Inertsalz: KNO ₃	\logK_2		4,20	5,78	5,51	3,20			
$ \begin{array}{c c} \hline & \\ & \\ \hline & \\ & \\ \end{array} $ $ \begin{array}{c c} & \\ \end{array} $ $ \begin{array}{c c} & \\ \end{array} $ $ \begin{array}{c c} \end{array} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \begin{array}{c c} \end{array} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \begin{array}{c c} $ $ \end{array} $ $ \end{array} $ $ \end{array} $ $ \end{array} $	$\log K_1$	3,68			11,0 b)	6,21		5,43	
$\begin{array}{l} \hbox{1-}(\alpha\text{-Pyridylmethylen})\text{-} \\ \hbox{2-}(\alpha'\text{-pyridyl})\text{-hydrazin}^{\text{a}}) \\ \hbox{pK von H_2L$^{2+}: 3,21$; 5,83} \\ \hbox{Inertsalz: KNO}_3 \end{array}$	\logK_2	. 2			5,25	5,58		5,02	

a) $\log \beta_2$ mit Fe²⁺: 17,2 b) pK von CuL²⁺: 6,12

Diskussion. – Die erhaltenen Stabilitätskonstanten mit 2-Aminomethyl-pyridin stimmen gut mit denjenigen von Goldberg & Fernelius [2] überein. Neu sind die K-Werte für Mn^{2+} , Ag^+ und Hg^{2+} , wobei der letztere mit Hilfe einer Hg-Elektrode bestimmt wurde. Mit $1-(\alpha-Pyridylmethylen)-2-(\alpha'-pyridyl)-hydrazin$ wurden K_1 und K_2 für Mn^{2+} , Zn^{2+} , Cd^{2+} sowie K_2 für Cu^{2+} pH-metrisch ermittelt. In allen Fällen ist $\log K_1 > \log K_2$, wobei für Zn^{2+} und Cd^{2+} die Differenz $\log K_1 - \log K_2$ wesentlich kleiner ist als für Komplexe anderer dreizähniger Liganden. Z.B. beträgt im Falle des Diäthylentriamins (den) $\log K_1 - \log K_2$ für Zn^{2+} 3,4 und für Cd^{2+} 3,05 [9]. Eine Umkehrung der normalen Sequenz der Konstanten $K_n < K_{n+1}$ ist schon in manchen Fällen beobachtet worden, wie z.B. bei der Bildung von «low-spin»-Komplexen von Fe^{2+} oder Ni^{2+} , und wird auch für die entsprechenden (low-spin!) Komplexe der besprochenen Verbindung erwartet. Aus spektrophotometrischen Messungen lässt sich in der Tat zeigen, dass der rote Komplex FeL_2^{2+} (L=e) direkt gebildet wird. Die

Untersuchung des ebenfalls stabilen Komplexes des Nickels mit spektrophotometrischen Messungen kann nur indirekt durch Austausch mit Fe^{II} durchgeführt werden. Sie hat ebenfalls gezeigt, dass nur der 1:2-Komplex entsteht. Die Daten der anderen Komplexe von *Green et al.* [3] mit $K_1 \leq K_2$ stimmen nicht mit unseren Ergebnissen überein. Neuere und ausgedehntere Untersuchungen von *Green & Goodwin* [10] mit Zn²⁺ haben aber auch die zu erwartende Reihenfolge der Konstanten für alle Ionenstärken von 0,1 bis Null geliefert. Im Gegensatz zu den Resultaten von *Green et al.* [3] hat man mit dem zweiwertigen Kupfer die Bildung eines 1:2-Komplexes beobachten können und dessen Stabilitätskonstante bestimmt. Im 1:1-Gemisch wird der CuL²⁺-Komplex gebildet, welcher eine Säure mit pK=6,12 ist.

Die Versuche, Gleichgewichtsdaten für die Systeme 2-Pyridylhydrazin-Fe^{II} bzw. -Fe^{III} zu gewinnen, sind wegen der Unstabilität der Lösungen gescheitert. Die anfänglich gelbe Lösung des Fe^{II}-Komplexes oxydiert sich rasch und wird dabei erst rot und dann violett. Dieselbe violette Färbung ist auch bei der Neutralisation der sauren Lösung des Fe^{III}_Komplexes zu beobachten. Eine Untersuchung der Zusammensetzung der Komplexe hat gezeigt, dass die violette Färbung eine Folge der Oxydation des Liganden ist. Das zweiwertige Kupfer-Ion wird in Anwesenheit von 2-Pyridylhydrazin reduziert. Die Liganden a, b, c und e sind in den Komplexen zweizähnig, wobei die ersten drei einen Chelat-Fünfring und der letzte einen Chelat-Sechsring bilden. Die Stabilität der Komplexe des 2-Aminomethyl-pyridins und des 2-Pyridylhydrazins sind sehr ähnlich, trotz der grossen Differenz der pK-Werte der entsprechenden monoprotonierten Amine [2]. Ein schlechterer Ligand ist das 6-Methyl-2aminomethyl-pyridin infolge sterischer Hinderung, die sich aber in den Komplexen mit Ag+ und Cd2+ kaum bemerkbar macht. Dies stimmt mit den Gleichgewichtsdaten der entsprechenden Monocarbonsäuren [5] überein. Erstaunlich ist die hohe Stabilität der Komplexe der Verbindungen a und c im Vergleich mit denjenigen des Äthylendiamins [2]. Eine detaillierte Diskussion der erwähnten Fragen kann aber nur bei Berücksichtigung aller thermodynamischen Daten der Komplexbildung gemacht werden, die wir bald zu publizieren gedenken.

LITERATURVERZEICHNIS

- Mit a): G. J. Sutton, Austr. J. Chemistry 13, 74, 222, 473 (1960); 14, 37, 545, 550 (1961);
 15, 563, 232 (1962). Mit b): G. J. Sutton, Austr. J. Chemistry 16, 371, 1137 (1963), S. Ursuno,
 J. nucl. inorg. Chemistry 32, 1631 (1970). Mit c): B. Emmert, K. Diehl & F. Gollwitzer, Ber. deutsch. chem. Ges. 62, 1733 (1929); B. Emmert & O. Schneider, ibid. 65, 1875 (1933). Mit d):
 M. Goodgame, J. chem. Soc. (A) 1966, 63. Mit c): F. Lions & K. V. Martin, J. Amer. chem. Soc. 80, 3858 (1958); F. Geldard & F. Lions, ibid. 84, 2262 (1962); Inorg. Chemistry 2, 270 (1963).
- [2] D. E. Goldberg & W. C. Fernelius, J. physic. Chemistry 63, 376 (1964).
- [3] R. W. Green, P. S. Hellman & F. Lions, Inorg. Chemistry 3, 376 (1964).
- [4] T. J. Lane, C. S. C. Thomson & J. W. Thomson, J. Amer. chem. Soc. 82, 4179 (1960).
- [5] G. Anderegg, Helv. 43, 414 (1960).
- [6] G. Anderegg, Helv. 48, 887 (1965).
- [7] G. Anderegg, Helv. 48, 220 (1965).
- [8] G. Anderegg, Helv. 44, 1673 (1961) [und Errata Helv. 46, 2471 (1963)].
- [9] J. E. Prue & G. Schwarzenbach, Helv. 33, 985 (1950).
- [10] R. W. Green & W. G. Goodwin, Austr. J. Chemistry 21, 1165 (1968).